Stoichiometry and Conformation of the Azacrown Moiety in Sodium Complexes of Azacrown Ethers. A Raman/IR Spectroscopic Study. Part I: Complexes of 4,13-Diaza-18-crown-6

TAKAYUKI CHUJO^a, ISAO SARAOKA^a, SHINOBU KATO^a, HIROYASU SATO^{a,b},* KOICHI FUKUHARA^c and HIROATSU MATSUURA^c

(Received: 31 January 1995)

Abstract. Three sodium complexes (bromide, iodide and thiocyanate) of 4,13-diaza-18-crown-6 were studied using Raman and IR spectroscopy and normal coordinate calculations to probe the stoichiometry of the complexes and the variation in the conformation of azacrown moiety on complex formation. Complex formation is accompanied by characteristic shifts of the bands, especially of those in the $800-900 \, \mathrm{cm}^{-1}$ region. Complexes of both 1:1 and 2:1 stoichiometry were observed. Normal coordinate calculations showed the reduction of symmetry of azacrown moiety to C_i , in contrast to the C_{2h} symmetry known for the parent azacrown and potassium thiocyanate complex.

Key words: Azacrown ether, sodium complex, conformation, Raman/IR spectra, normal mode calculations.

1. Introduction

Crown ethers constitute an important class of macrocyclic ligands [1–3]. Their peculiar properties originate from their ability to incorporate a wide variety of metal ions in their cavities, which causes a substantial conformational change of the cyclic oxyethylene chain. Raman spectroscopy has proved to be a very powerful means to probe these changes. Sato and Kusumoto [4] investigated Raman spectra of 1,4,7,10,13,16-hexaoxacyclooctadecane (18C6), 1,4,7,10,13-pentaoxacyclopentadecane (15C5), along with their complexes with Na and K salts, and found that the crown rings in these complexes have highly symmetric conformations in both crystalline and viscous liquid states. Fouassier and Lassegues [5] measured IR, Raman and neutron spectra of alkali metal complexes of 18C6 in

^aDepartment of Chemistry for Materials, Faculty of Engineering, Mi'e University, Tsu 514, Japan.

^bInstitute for Molecular Science, Myodaiji, Okazaki 444, Japan.

^cDepartment of Chemistry, Faculty of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 724, Japan.

^{*} Author for correspondence.

the solid state. Takeuchi et al. [6] carried out a detailed study of the Raman spectra of 18C6, 15C5 and their complexes with Li⁺, Na⁺, K⁺, Cs⁺, Mg²⁺, Ca²⁺ and Ba²⁺ with normal coordinate calculations. They concluded, among other things, that ring structures in 18C6 complexes are not much distorted from the highly symmetric D_{3d} configuration, while 15C5 complexes exhibit several types of ring structures, depending on the size and charge of the cation. Fukushima and Tamaki [7] studied the Raman spectra of 1,4,7,10-tetraoxacyclododecane (12C4) and its Li⁺, Na⁺, K⁺, NH⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺ and Pb²⁺ complexes. With the aid of normal vibration calculations they found that the conformation of the crown ring in these complexes depends to a remarkable degree on the cation. Khanna and Stranz [8] and Hilliard et al. [9] studied the IR and Raman spectra of counteranions (permanganate, dichromate and oxalate) in potassium complexes of 18C6. Zhelyaskov et al. [10] analysed Raman CH stretching spectra of 12C4, 15C5, 18C6 and their complexes with Li⁺, Na⁺, K⁺ and Cu⁺, applying Fourier deconvolution to resolve the overlapped components due to intramolecular interactions and Fermi resonance. Benzo-15C5 and benzo-18C6 have been studied by Egyed and Izvekov [11] and by Takeuchi et al. [12], respectively.

In azacrown ethers, some of the oxygen donor atoms in crown ethers are substituted by NH or NR groups. The conformations of metal ion complexes of azacrown ethers are more interesting than those of crown ethers, in view of the different abilities of electron donation and hydrogen bond formation of NH and NR groups compared to O atoms. Although rather extensive studies have been performed on complexes of crown ethers, those on azacrown ethers are still very limited. Matsuura *et al.* [13] reported Raman and IR spectra of uncomplexed 1,7,10,16-tetraoxa-4,13-diazacyclooctadecane (4,13-diaza-18-crown-6, hereafter abbreviated as A_218C6) and analysed the data by normal coordinate calculations. This compound is known to crystallize in the C_{2h} conformation [14], as its KSCN complex does [15]. In the present paper, a Raman/IR spectroscopic study has been performed on sodium complexes of A_218C6 . The stoichiometry of the complexes has been revealed. Normal mode calculations have been carried out to predict the conformations of the azacrown moiety in these complexes.

2. Experimental

 A_218C6 from Merck was recrystallized from n-heptane. Sodium salts (bromide, iodide and thiocyanate) were G.R. reagents from Nacalai Tesque and recrystallized from methanol. Methanol (G.R. from Nacalai Tesque) was purified by distillation.

A₂18C6 and an alkali metal salt were mixed in a known ratio with methanol in a screw-topped glass bottle, and allowed to react at room temperature for a few hours under sonication. Methanol was then evaporated off. Crystalline products obtained were dried under vacuum.

Fig. 1. Raman spectra of the NaBr-A₂18C6 system for various [NaBr]/[A₂18C6] ratios. (a) A₂18C6, (b)–(i) [NaBr]/[A₂18C6] = 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5 and 3.0, respectively. Small arrows: see Text.

Raman measurements were performed at room temperature on the crystalline complex in a sealed glass tube. The excitation radiation at 514.5 and 488 nm was obtained from a Spectra Physics 165 argon ion laser. A Jasco CT 80D double monochromator equipped with a Hamamatsu R-649/C-1050 photomultiplier/photon counting unit was used in the measurements. IR measurements were made on KBr discs using a Jasco IR-700 spectrophotometer.

2.1. EXPERIMENTAL RESULTS

The Raman spectra of NaBr, NaI and NaSCN complexes are shown in Figures 1–3. Positions of the Raman and IR bands are given in Tables I–IV.

TABLE I. Observed and calculated wavenumbers (cm $^{-1}$) and vibrational assignments for NaBr and NaI (1:1) complexes of A_218C6 .

NaBr(1:1)		NaI(1:1)		Calc.a	Assignments
R	IR	R	IR	(A)	
	1350m		1349m	1366u	CCO wag
	1333s		1332s	1327u	CCN wag
	1319m		1318m		CCN wag
		1301w		1292g	CCN wag
		1278w		1276g	CCO tw
1269s		1269s		1265g	CCN tw
	1263s		1261s	1269u	CCN tw
1240w		1243w		1241g	CCO tw
	1218m		1219m	1225u	CCN tw
		1210w		1219g	CCN tw
	1199m		1198m		CCN tw
1179m		1167s		1160g	CC-NC str, CCO rock
	1169sh		1159sh	1159u	CC—NC str
1136m		1138sh		1136g	OC-CO str, CC-OC str
		1094w		1099g	CCO rock
	1092vs		1091vs	1093u	CCO rock, CC-OC str
1078m		1064m		1076g	CC—OC str
	1058sh		1058sh	1053u	CC—OC str
		1054sh		1056g	OC—CO str
	1033w		1031w	1044u	OC—CO str
				957g	CCO rock
	957s		953s	940u	CCN rock
				929g	OC-CO str, CCN rock
	913w	920w		919g	CCN rock
			912w	897u	OC—CN str, OC—CO str
	882w		892sh	879u	CNC bend, CC-NC str
870s		867s		876g	CNC bend, CC-NC str
	841sh		833m	827u	CC—OC str
827s		822s		837g	CC—OC str
	825s		819m	820u	CC—OC str
		810w		814g	CC—OC str
			804sh		
			780sh	780u	NH para bend
				776g	NH para bend
		577m		572u	COC bend
553m		548m		559g	CCO def
	530s		529s	525u	CCN def
370w				393g	CCO def
281s		278s		269g	CCO def

^aAll bands are listed for the 960–550 cm⁻¹ range. Only those corresponding to the observed bands are listed for other ranges, while all bands are shown in Figure 4.

TABLE II. Observed and calculated wavenumbers (cm $^{-1}$) and vibrational assignments for NaI (2:1) complexes of A₂18C6.

NaI(2:1)		Calc.a	Assignments	
R	IR	(B)		
	1352m	1365 <i>u</i>	CCO wag	
	1333s	1331u	CCN wag	
	1319m	1324u	CCO tw, CCN wag	
1293m		1297u	CCO tw	
1269s		1275g	CCN tw	
	1261s	1259u	CCO tw, CCN tw	
1247m		1248g	CCO tw	
1223w		1233g	CCO tw	
	1218m	1218u	CCN tw	
	1198m	1213u	CCN tw	
1184w		1156g	CCN rock	
	1093vs	1093u	CCO rock, CC-OC str	
1088w		1086g	CC—OC str	
1056sh		1062g	OCCN str	
1046m		1060g	OC-CN str	
	1035s	1023u	CC-OC str	
	1026w	1019u	CC—OC str, CCO rock	
950w		955q	CCN rock	
	954s	946u	CCN rock	
926m		935g	OC-CN str, CCO rock	
	922w		,	
915m		930q	OC—CN str, CCN rock	
	902w	899u	CCO rock	
		892u	CCN rock, CC—OC str	
		873 <i>g</i>	CNC bend	
866s		870 <i>q</i>	CNC bend, CCO rock	
	836m	858u	CC—OC str, CCN rock	
	820m	832u	CC—OC str, CCO rock	
812s	0_0,,,	778g	NH para bend	
0.20	804m	778u	NH para bend	
	800m	7700	1411 para bena	
668m	000113	665 q	COC bend, CCO def	
000111	648m	666 <i>u</i>	COC bend, CCO def	
602m	618sh	0000	COC bend	
002111	592sh	578u	CCO def, COC bend	
	572311	561u	CCO def	
547s		547 <i>q</i>	CCO def, CNC bend	
2175	533w	533u	CCN def, CCO def	
400m	222 W	403g	CCN def	
347m		353 <i>q</i>	CCN def, CCO def	
282s		333g 297g	CCO def, CNC bend	
_023		y	——————————————————————————————————————	

^aSee footnote a of Table I.

TABLE III. Observed and calculated wavenumbers (cm^{-1}) and vibrational assignments for NaSCN (1:1) complex of A_218C6 .

NaSCN (1:1)		Calc.a	Assignments	
R	IR	(C)	· ·	
	1349m	1367u	CCO wag	
	1331s	1356u	CCN wag	
	1318m	1342u	CCN wag	
1299m		1291g	CCO tw	
	1283w	1282u	CCO tw, CCN tw	
1275sh		1275g	CCO tw	
1263m		1256g	CCO tw, CCN tw	
	1263m	1255u	CCO tw, CCN tw	
1242w		1239g	CCO tw	
	1220m	1226u	CCN tw	
	1200w	1222g	CCN tw	
1164w		1156g	CC-NC str	
	1168sh	1152u	CC-NC str	
1134m		1133g	CC—OC str	
	1112sh	1106u	CCO rock, OC-CO str	
1091w		1100g	CCO rock	
	1089vs	1096u	CCO rock, CCN rock	
1065w		1067g	OC-CN str, OC-CO str	
1055w		1058g	OC—CN str	
	1043sh	1047u	OC—CN str	
1044w		1037g	CC—OC str	
1017w	1025sh	1034u	CC—OC str, CCN rock	
942w		948 <i>g</i>	CCO rock, CC—OC str	
	943s	946u	CCO rock	
	937sh	934u	CCO rock, CCN rock	
926w		932g	CCO rock	
	914sh	919u	CC—OC str, CCO rock	
909w		912g	OC-CO str, CCO rock	
886w	893sh	871u	CC—OC str, CNC bend	
854s		867g	CNC bend	
835w		837 <i>g</i>	CC—OC str, CCN rock	
	829s	825u	CC—NC str	
816m		820g	CC-NC str	
	813w	820u	CC—OC str	
	802w			
774w		792g	NH para bend	
	770sh	794u	NH para bend	
740s	751s		SCN	
	726sh			
	612w	605u	CCN def, CNC bend	
588m		605g	CCN def, CNC bend	
	583m	543u	CCO def	
563m		541g	CCO def	
	530m	498u	CCN def	

^a All bands are listed for the 1060–500 cm⁻¹ range. Only those corresponding to the observed bands are listed for other ranges, while all bands are shown in Figure 7.

TABLE IV. Observed and calculated wavenumbers (cm $^{-1}$) and vibrational assignments for NaSCN (2:1) complex of A₂18C6.

NaSCN(2:1)		Calc.a	Assignments	
R	IR	(D)		
	1377w	1381u	CCO wag	
	1354w	1367u	CCO wag	
	1336s	1344u	CCN wag	
	1320m		CCN tw	
1295w		1294g	CCN tw	
	1280s	1284u	CCO tw	
1279w		1281g	CCO tw	
1267m	1268w	12 6 7g	CCO tw	
	1255w	1255u	CCN tw, CCO tw	
1246w		1243g	CCO tw, CCN tw	
	1231w	1227u	CCO tw	
1218w	1213w	1218g	CCN tw, CCO tw	
1176w			CCN tw	
	1161w	1149u	CC—OC str	
1128m		1136g	CCO rock, OC-CO str	
	1124sh	1132u	CC—OC str	
	1094sh	1098u	CC—NC str	
1083w		1085g	CCO rock	
	1080vs	1084u	CCO rock	
1060m		1065g	CC-NC str, CCN rock	
	1057sh	1060u	CC-NC str	
1044m		1048g	CCN rock, CCO rock	
	1041w	1043u	CC—NC str	
	1018w	1016u	CC—OC str	
		954g	OC—CN str	
	941vs	947u	CCO rock, OC-CO str	
	929s	937u	CCO rock	
	925sh	928u	CC-OC str, CCO rock	
	901m		OC—CO str	
862s		868g	CCO rock, NH para bend	
		857g	CC—OC str, NH para ber	
	836m	833u	CCN rock, CC—OC str	
	822s	823u	CCN rock, CCO rock	
807m	808sh		?	
	793s	784 <i>u</i>	NH para bend	
	769vs	783 <i>g</i>	NH para bend	
762s	730s		SCN	
		697u	CCO def, CCN def	
		686g	CCO def, CCN def	
	668sh	668u	CCO bend, CCN def	
500	612s	650u	COC bend, CCN def	
593w	* 0-	586g	CCO def, CCN def	
	583s	580u	CCO def	
	538w	498u	CCO def	
		458 <i>g</i>	CCN def, CCO def	
402w		369g	CCO def	
344w		328g	CCN def, CCO def	

 $^{^{\}rm a}$ All bands are listed for the 960–360 cm $^{-1}$ range. For other remarks, see footnote a of Table III.

Fig. 2. Raman spectra of the NaI–A₂18C6 system for various [NaI]/[A₂18C6] ratios. (a) A_2 18C6, (b)–(i) [NaI]/[A₂18C6] = 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0, respectively. Small arrows: see text.

2.1.a. NaBr complex

The Raman spectra of the NaBr complex for various [NaBr]/[A_218C6] ratios are shown in Figure 1. The band characteristic of the complex appears near $870~\rm cm^{-1}$. When the intensity ratio of this band to the band near $827~\rm cm^{-1}$, which keeps a nearly constant intensity, is plotted against [NaBr]/[A_218C6], it increases with the ratio and levels off at the ratio of unity. The $896~\rm cm^{-1}$ band of parent A_218C6 decreases in intensity with the ratio and is no longer observable above the ratio of unity. These results indicate the shift of the $896~\rm cm^{-1}$ band to $870~\rm cm^{-1}$ and the formation of the 1:1 complex. A closer look at the spectra for the ratios 0.75 and 1.0 reveals some additional subtle features; small inflections are barely discerned near $810~\rm and~850~\rm cm^{-1}$ (indicated by small arrows in the figure). We will touch on these small features later.

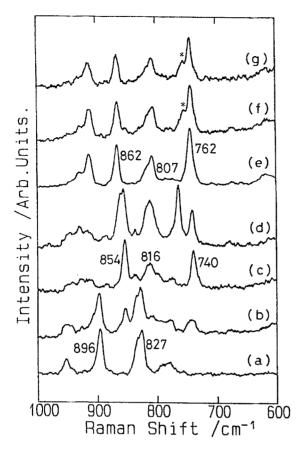


Fig. 3. Raman spectra of the NaSCN- A_218C6 system for various [NaSCN]/[A_218C6] ratios. (a) A_218C6 , (b)-(g) [NaSCN]/[A_218C6] = 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0, respectively. *Excess SCN.

2.1.b. NaI complex

The Raman spectra of the NaI complex (Figure 2) are more complex. For [NaI]/[A₂18C6] ratio of unity, the spectral feature is similar to that of the 1:1 complex of NaBr, and is characterized by the bands at 867 and 822 cm⁻¹. When this ratio approaches 2.0, however, a further change in the spectra is observed; the band at 812 cm⁻¹ appears in place of that at 822 cm⁻¹. Additional bands appear near 668 cm⁻¹ and 915 cm⁻¹. The spectra remain essentially the same above the ratio of 2.0 (until 3.0). This indicates the formation of the 2:1 complex besides the 1:1 complex. It should be noted that no band is observed in the 600–700 cm⁻¹ range for either the parent A₂18C6, its potassium complexes [16], and the NaBr and NaI (1:1) complexes. The conformation of the NaI complex (2:1) is therefore distinct from these complexes. A puzzling behavior is found in the spectra for the ratios 0.5 and 0.75; additional bands appear near 810, 850 and 920 cm⁻¹ (indicated by small arrows in the figure). It should be noted that the positions of these extra

bands nearly coincide with those of the bands observed for the 1:1 complex of NaSCN, as mentioned below. This strongly suggests the coexistence of a complex of another type, with the conformation of azacrown ring quite similar to that in the NaSCN (1:1) complex, for these ratios. The small inflections found for the NaBr case can be interpreted in a similar way. (The authors are grateful to the referee who pointed out these features.)

2.1.c. NaSCN complex

The Raman spectra of the NaSCN complex are given in Figure 3. The band characteristic of the complex formation appears at 854 cm $^{-1}$ (for the [NaSCN]/[A218C6] ratio 0.5–1.0) or 862 cm $^{-1}$ (for the ratio 2.0–3.0). Both of these bands appear for the ratio 1.5. A band near 740 cm $^{-1}$ must be due to the SCN moiety in the complex. In addition to this, the band of excess SCN (marked with an asterisk) is found at 754 cm $^{-1}$ for the ratio larger than 2.5. Although the spectrum for the ratio 0.5 appears very complex, it can be reproduced by superposition of the spectra of parent azacrown and the 1:1 complex. Likewise, the spectrum for the ratio 1.5 can be reproduced by superposition of the spectra of the 1:1 and 2:1 complexes, except for an unexplainable band at 765 cm $^{-1}$. These analyses indicate that both 1:1 and 2:1 complexes exist for the NaSCN–azacrown system.

The spectra for the sodium salts (NaI and NaSCN) are rather complex; both 1:1 and 2:1 complexes are present, in contrast to the potassium salt systems which only form 1:1 complexes [16]. This is most probably due to the different size of sodium and potassium cations. While a potassium ion (diameter 2.66 Å) fits the inner cavity of the azacrown ether (2.6-3.2 Å), a sodium ion (1.94 Å) is too small. This difference in size confers an extra freedom of conformational change on the azacrown ring in the sodium complexes. At least two conformations of azacrown ring were observed for the 1:1 complex of Na^+ ion: one is the NaBr/NaI type and the other the NaSCN type. Some small amount of the latter type was found to coexist with the former. The different conformations for different counteranions must have their origin in the subtle interplay of Na^+ -azacrown and Na^+ -counterion interaction.

2.2. NORMAL COORDINATE CALCULATIONS

Normal coordinate calculations were carried out with a computer program MVIB [17]. This program is capable of treating normal vibrations of chain molecules, open-chain or cyclic-chain, by simply inputting a molecular name, conformation (trans (T), cis (C), gauche (G) and skew (S)), and corrections for internal rotation angles. The initial force constants used in the calculation were those of uncomplexed A₂18C6 used by Matsuura et al. [13]. The calculations were carried out on a FACOM M-760 computer set up in the Information Processing Center of Mi'e

University. Normal modes of vibrations were drawn directly from the output of MVIB using the utility program reported in Ref. [13].

Comparison of the spectra of the sodium complexes with that of the parent azacrown indicates substantial changes in equilibrium conformation of the azacrown moiety on complex formation. No crystal structures have been reported for the sodium salt complexes. For the prediction of conformations of the azacrown moiety in these complexes, normal coordinate calculations were carried out for more than 120 conceivable molecular conformations. Some of them were constructed by referring to '190 ideal conformations of 18-crown-6' of Uiterwijk *et al.* [18]. We notice that a Raman–IR mutual exclusion principle is essentially obeyed in the sodium salt complexes, as is evident from Tables I–IV. This fact points to the presence of an inversion center in these complexes. Therefore, we consider possible conformations with an overall symmetry C_i . Positions of the bands, especially of those in the region below $1000 \, \mathrm{cm}^{-1}$, where many skeletal stretching and deformation modes appear, are found to be very sensitive to the change in conformation of the azacrown ring.

The conformations of the azacrown moiety for the complexes are discussed below on the basis of the normal coordinate calculations. The conformations predicted are, however, not conclusive, and further studies are necessary for their establishment.

2.2.a. 1:1 Complexes of NaBr and NaI

The distribution of the observed bands (Figure 4(a)) can be reproduced reasonably well (Figure 4(b)) with the conformation A depicted in Figure 5(a). This conformation corresponds to

where T, G and H stand for *trans*, *gauche*⁺, and *gauche*⁻, respectively. All oxygen and nitrogen atoms face inside. The *gauche* configurations at 1–2 and 10–11 positions distinguish this conformation from that of free azacrown. Inward rotation of the ring at these positions allows oxygen atoms at the 7 and 16 positions to approach the center of the ring. This seems to be favorable for the coordination of a sodium ion, which is smaller than the inner cavity of the azacrown.

In order to clarify the correlation between the bands of the NaBr or NaI (1:1) complex and those of the parent azacrown ether, vibrational modes in the 700–960 cm⁻¹ region for the conformation A are depicted in Figure 6(a), in comparison with those of the parent azacrown in Figure 6(b). The *gerade* bands at 929 and 919 cm⁻¹ correlate to the bands of the parent at 948 and 935 cm⁻¹, respectively; The *ungerade* band at 897 cm⁻¹ correlates with the 903-cm⁻¹ band (a_u) of the parent. The 780-(u) and 776-(g) cm⁻¹ bands of the complex can be correlated with

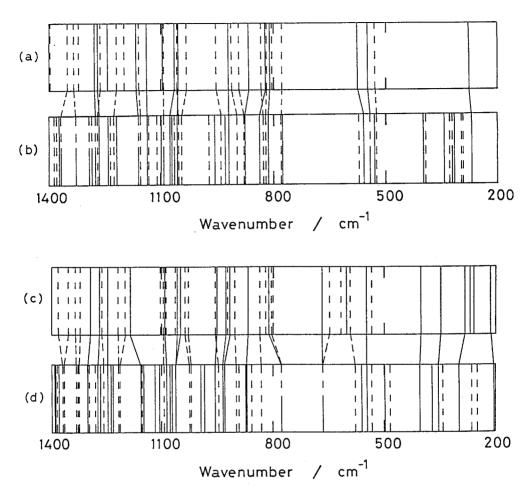


Fig. 4. Comparison of the experimental and calculated spectra for 1:1 and 2:1 complexes of NaI/A₂18C6. Positions of bands are indicated by vertical bars. (a) and (b): exp. and calc. of the 1:1 complex; (c) and (d): exp. and calc. of the 2:1 complex. Solid and broken lines in (a) and (c) show Raman and IR bands, and those in (b) and (d) are g and u bands, respectively. Half-way broken lines in (b) and (d) show g and u bands located close together.

the 783- (b_u) and 783- (a_g) cm⁻¹ bands of the parent with some admixture of the CC—NC stretching character. Extensive mixing of modes occurs for the bands at 814–879 cm⁻¹. The most peculiar is the 876-cm⁻¹ band (g) of the complex. Its vibrational mode is dominated by an admixture of the CNC bending and CC—NC stretching characters, appearing in the 783- (a_g) and 823- (a_g) cm⁻¹ bands of the parent, respectively.

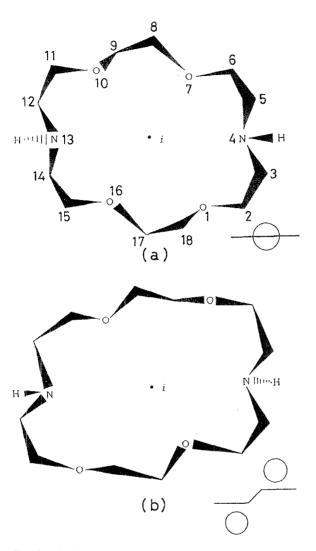


Fig. 5. Projected images of predicted molecular conformation of azacrown ring. 1:1 (a) and 2:1 (b) complex of NaI/A_2 18C6, respectively. The probable location of a Na^+ ion is shown by the circle. i: inversion center.

2.2.b. 2 : 1 Complex of NaI

This complex is characterized by the appearance of Raman and IR bands in the 600–700 cm⁻¹ region which is an open window for the parent azacrown and 1:1 complex. The calculation indicates that the occurrence of band(s) in this range is found only when *cis* and/or *skew* conformations are involved. The positions of the

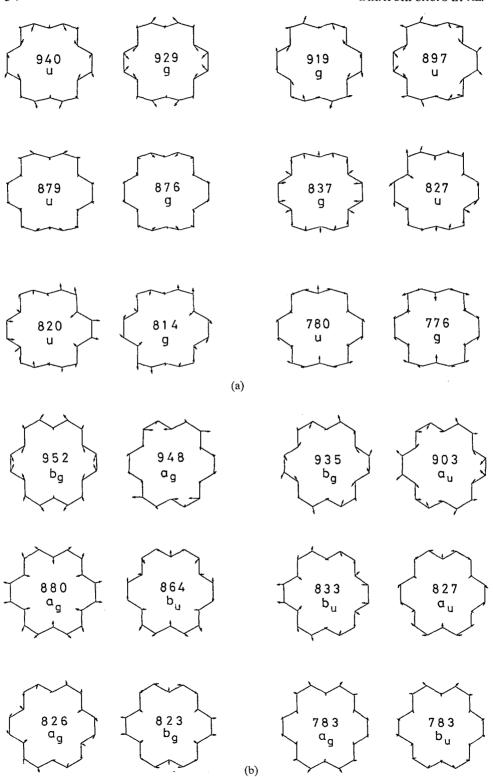


Fig. 6. Graphic representation of normal modes of NaBr and NaI (1:1) complexes (a), in comparison with those of parent azacrown (b).

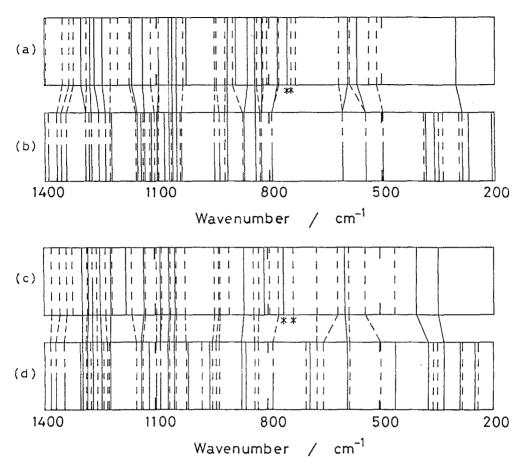


Fig. 7. The same as Fig. 4 for 1:1 and 2:1 complexes of NaSCN/A₂18C6. (a) and (b): exp. and calc. of the 1:1 complex; (c) and (d): exp. and calc. of the 2:1 complex. Asterisks indicate bands of SCN.

observed bands (Figure 4(c)) can be fitted reasonably well (Figure 4(d)) with the conformation B shown in Figure 5(b), which corresponds to

where S and K stand for *skew* with opposite directions. The azacrown ring assumes a chair form; two sodium ions are most probably located above and below the ring, as depicted schematically in the figure.

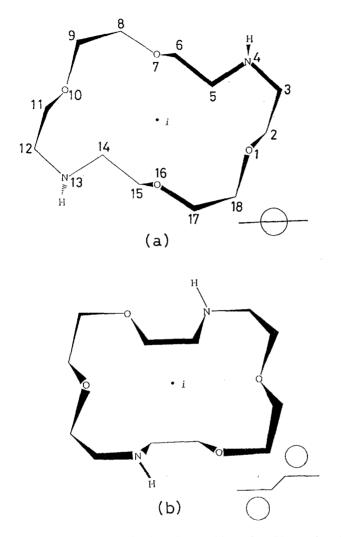


Fig. 8. The same as Fig. 5 for the 1:1 (a) and 2:1 (b) complex of NaSCN/A₂18C6.

2.2c. 1:1 Complex of NaSCN

The positions of the observed bands (Figure 7(a)) can be fitted (Figure 7(b)) with the conformation C

shown in Figure 8(a). The azacrown ring is somewhat elongated in the C_3 — C_{12} direction. The two nitrogen atoms are now located a little far away from the central metal cation compared to four oxygen atoms. Vibrational modes in the 700–960 cm⁻¹ region are depicted in Figure 9. Mixing among the modes is extensive

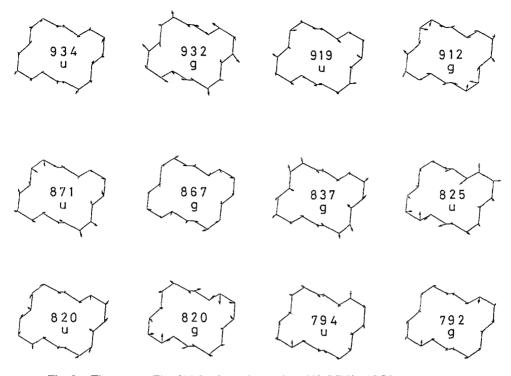


Fig. 9. The same as Fig. 6(a) for the 1:1 complex of NaSCN/A₂18C6.

compared to the parent azacrown. The 867-cm $^{-1}$ band (g) is again dominated by an admixture of the CNC bending and CC—NC stretching characters.

2.2d. 2:1 Complex of NaSCN

The positions of the observed bands (Figure 7(c)) can be fitted as in Figure 7(d) by the chair-form conformation D

3. Conclusions

Three sodium complexes (bromide, iodide and thiocyanate) of 4,13-diaza-18-crown-6 (A₂18C6) have been studied by Raman/IR spectroscopy and normal coordinate calculations. The sodium ion gave both 1:1 and 2:1 stoichiometry, in constrast to the 1:1 stoichiometry of the potassium complexes. Normal coordinate calculations reveal that the symmetry of the azacrown moiety in sodium complexes is lowered to C_i , in contrast to the higher symmetry, C_{2h} , of the parent azacrown and KSCN complex. This can be understood by the smaller size of a

Na⁺ ion compared to the inner cavity of the azacrown, which gives extra freedom of displacement of the azacrown ring.

Acknowledgment

The authors thank Messrs. Masanori Uchida, Hiromune Wada and Hiroyuki Shimada for assistance.

References

- 1. M. Dobler: Ionophores and Their Structures, Ch. 8, pp. 121-213, Wiley (1981).
- I. Goldberg: Complexes of Crown Ethers with Molecular Guests, Inclusion Compounds (Vol. 2, Eds. J. L. Atwood, J. E. D. Davies and D. D. MacNicol), Ch. 9, pp. 261–335, Academic Press (1984).
- 3. F. Vögtle and E. Weber (Eds.): Host Guest Complex Chemistry/Macrocycles, Springer Verlag (1985).
- 4. H. Sato and Y. Kusumoto: Chem. Lett. 635 (1978).
- 5. M. Fouassier and J.C. Lassegues: J. Chim. Phys. 75, 865 (1978).
- 6. H. Takeuchi, T. Arai and I. Harada: J. Mol. Struct. 146, 197 (1986).
- 7. K. Fukushima and Y. Tamaki: J. Mol. Struct. 162, 157 (1987).
- 8. R.K. Khanna and D.D. Stranz: Spectrochim. Acta. A36, 387 (1980).
- 9. L.J. Hilliard, M.R. Rice and H.S. Gold: Spectrochim. Acta A38, 611 (1982).
- 10. V. Zhelyaskov, G. Georgiev, Zh. Nickolov and M. Miteva: Spectrochim. Acta A45, 625 (1989).
- 11. O. Egyed and V.P. Izvekov: Spectrosc. Lett. 22, 387 (1989).
- 12. H. Takeuchi, T. Arai and I. Harada: J. Mol. Struct. 223, 355 (1990).
- 13. H. Matsuura, K. Fukuhara, K. Kaneko and H. Yoshida: J. Mol. Struct. 265, 269 (1992).
- 14. M. Herceg and R. Weiss: Bull. Soc. Chim. Fr. 549 (1972).
- 15. D. Moras, B. Metz, M. Herceg and R. Weiss: Bull. Soc. Chim. Fr. 551 (1972).
- I. Saraoka, S. Kato, T. Chujo, H. Sato, K. Fukuhara and H. Matsuura: J. Incl. Phenom. 22, 59 (this issue).
- 17. H. Matsuura: Comput. Chem. 14, 59 (1990).
- 18. J.W.H.M. Uiterwijk, S. Harkema and D. Feil: J. Chem. Soc., Perkin Trans. 2, 721 (1987).